Bailey Pairs With Free Parameters, Mock Theta Functions and Tubular Partitions

نویسنده

  • George E. Andrews
چکیده

This study began in an effort to find a simpler derivation of the Bailey pairs associated with the seventh order mock theta functions. It is shown that the introduction of a new parameter independent of both a and q leads to a much simpler treatment. It is noted that a previous treatment of the central fifth order mock theta function inadvertently uses this approach. The paper concludes by applying this method to find new surprising identities and new arithmetic objects, tubular partitions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bailey Chain and Mock Theta Functions

Standard applications of the Bailey chain preserve mixed mock modularity but not mock modularity. After illustrating this with some examples, we show how to use a change of base in Bailey pairs due to Bressoud, Ismail and Stanton to explicitly construct families of q-hypergeometric multisums which are mock theta functions. We also prove identities involving some of these multisums and certain c...

متن کامل

q-HYPERGEOMETRIC DOUBLE SUMS AS MOCK THETA FUNCTIONS

Recently, Bringmann and Kane established two new Bailey pairs and used them to relate certain q-hypergeometric series to real quadratic fields. We show how these pairs give rise to new mock theta functions in the form of q-hypergeometric double sums. Additionally, we prove an identity between one of these sums and two classical mock theta functions introduced by Gordon and McIntosh.

متن کامل

Split $(n+t)$-Color Partitions and Gordon-McIntosh Eight Order Mock Theta Functions

In 2004, the first author gave the combinatorial interpretations of four mock theta functions of Srinivasa Ramanujan using n-color partitions which were introduced by himself and G.E. Andrews in 1987. In this paper we introduce a new class of partitions and call them “split (n+t)-color partitions”. These new partitions generalize Agarwal–Andrews (n + t)-color partitions. We use these new combin...

متن کامل

On combinatorial extensions of some mock theta functions using signed partitions

Recently Agarwal and Sood, in their paper entitled “Split (n+ t)−color partitions and Gordon-McIntosh eight order mock theta functions, The Electronic Journal of Combinatorics 21(2), (2014), #P2.46”, have defined and used the ‘split (n+t)−color partitions’ to obtain the combinatorial interpretations of two mock theta functions. The purpose of this paper is to extend their results using ‘signed ...

متن کامل

New combinatorial interpretations of some mock theta functions

In 1972, Bender and Knuth established a bijection between certain infinite matrices of non-negative integers and plane partitions and in [2] a bijection between Bender-Knuth matrices and n-color partitions was shown. Here we use this later bijection and translate the recently found n-color partition theoretic interpretations of four mock theta functions of S. Ramanujan in [1] to new combinatori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013